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The evolution characteristics of a matter-wave bright soliton are investigated by means of the variational
approach in the presence of spatially varying nonlinearity. It is found that the atom density envelope of
the soliton is changed as a result of the spatial variation of the s-wave scattering length. The stable soliton
can exist in appropriate initial conditions. The movement of the soliton depends on the sign and value of
the coefficient of spatially modulated nonlinearity. These theoretical predictions are confirmed by the full
numerical simulations of the one-dimensional Gross-Pitaevskii equation.
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At sufficiently low temperatures, the mean-field de-
scription of the Bose-Einstein condensate (BEC) dy-
namics is based on the nonlinear Schrödinger equation
(NLSE) with the trapping potential, also called Gross-
Pitaevskii equation, for the mean-field wave function ψ
in three-dimensions[1]. ψ is normalized to the number
N ′ =

∫

|ψ|2 dr of condensed atoms. In the realistic ex-
perimental setting, an external electromagnetic field is
used to produce, trap, and manipulate the BEC. Exper-
iments with BECs have now acquired a high degree of
control over the key parameters of the system. Using a
strongly anisotropic trapping potential, it is possible to
freeze the atomic motion along one or several directions;
therefore, one realizes in this way the BEC with reduced
dimensionality[2,3]. Using Feshbach resonances driven by
a magnetic[4] or optical[5] field, one can also adjust al-
most at will the interaction strength and sign between the
atoms. Recently, the dynamics of matter-wave solitons
with different types of management of system parame-
ters has been under intensive investigations. Two types
of modulations have been considered: dispersion and
nonlinearity management, which can occur both in time
and in space. In nonlinearity modulation, Fedichev et al.
predicted that the spatial variation of the laser field in-
tensity by proper choice of the resonance detuning could
lead to the spatial dependence of the atomic scattering
length[6], i.e., so-called “collisionally inhomogeneous”
BECs. The theoretical result has been demonstrated in
recent experiment with the 87Rb condensate[5]. In the
experiment, atoms in a 87Rb condensate are exposed
to laser light which is tuned close to the transition fre-
quency to an excited molecular state. By controlling the
power and detuning of the laser beam the atomic scatter-
ing length is changed over one order of magnitude, from
10a0 to 190a0 (a0 is the Bohr radius). It is well known
that the nonlinearity term in the NLSE is introduced
by the inter-atomic interactions, which are taken into
regard through an effective mean field. The coefficient of
the nonlinear term is controlled by the s-wave scattering
length as, whose sign and magnitude determine many of

the fundamental properties of BECs such as their shape
or collective excitations. Motivated by the experiment,
a lot of theoretical work has been carried out related
to the existence and stability[7,8], dynamical trapping
and transmission[9,10], and dissipative dynamics[11] of
matter-wave solitons in a collisionally inhomogeneous
environment. Despite the aforementioned experimental
and theoretical work, the evolution characteristics of a
BEC bright soliton with spatially modulated nonlinear-
ity have so far not been analyzed thoroughly. The aim of
the present work is to investigate the evolution charac-
teristics of a BEC bright soliton trapped in a nonlinear
optical lattice (OL) by the variational approach. With
the help of the idea of an effective potential[12], the mo-
tion of the soliton’s center-of-mass is discussed.

We adopt the trapping potential that is a weak OL
along the longitudinal direction (x direction) and a strong
harmonic magnetic field in the radial directions (y, z di-
rections). The dynamics for a one-dimensional (1D)
mean-field wave function u ≡ u(x, t) can be described
by[13]

ih̄
∂u

∂t
= − h̄2

2m

∂2u

∂x2
+ g1D |u|2 u+ V (x)u , (1)

where V (x)=2V0cos2(kx ) is the OL potential which is cre-
ated by two counter propagating laser beams near the op-
tical induced Feshbach resonance, V0 is the lattice depth
and the lattice wave number k can be tuned by the geom-
etry of laser beams. In the case of the long-period OL, k
is small so that the OL is smooth and slowly varying on
the soliton scale. g1D = 2h̄2as/ma

2
⊥, a⊥ = (h̄/mω⊥)1/2

is the transverse harmonic-oscillator length, ω⊥ is the
transverse confinement frequency, and m is the mass of
an atom inside the BEC. The s-wave scattering length as

accounts for the repulsive (as >0) and attractive (as <0)
inter-atomic interactions respectively. In this letter, we
only investigate the bright matter-wave soliton in the
presence of a spatially varying nonlinearity, which exists
in the case of attraction. Assuming that this condensate
is collisionally inhomogeneous, as explained above, the

1671-7694/2009/090834-04 c© 2009 Chinese Optics Letters



September 10, 2009 / Vol. 7, No. 9 / CHINESE OPTICS LETTERS 835

spatial variation of laser field intensity I(x) = I0cos2(kx )
produces the spatial variation of the atomic scattering
length as = as0 + as1cos2(kx ), where as0 is the s-wave
scattering length in the absence of the external trap-
ping potential and is a negative value corresponding to
attractive condensates, as1 is a constant related to the
optical intensity and may be either positive or negative.
Then, u(x, t) satisfies the following normalized 1D NLSE:

i
∂ u

∂ t
+

1

2

∂2u

∂ x2
+ [ε0 + ε1cos(2kx)] |u|2 u

= V0cos(2kx)u . (2)

In Eq. (2), we have introduced the dimensionless vari-

ables t = t′/ω⊥, x = x′a⊥, u = u′/a
1/2
⊥ , and dropped

the primes on rescaled variables to simplify the notation.
ε0 is defined as ε0 = 2as0/a⊥ + ε1, where ε1 = as1/a⊥
is the spatially modulated coefficient and is small. V0 is
measured in the unit of h̄ω⊥, and an additive constant V0

has been omitted because it does not affect the dynam-
ics of the BEC. as0 is presented in form of the absolute
value. The number of particles in the 1D system (2),

defined as N =
∫ +∞
−∞ |u|2dx, has a relation to the actual

number of atoms N ′ as N ′ = N/a⊥, and N is approxi-
mately 100−101[12]. Below we will use only the quantity
Nreferring to it as “the number of atoms” for simplicity.

If ε0=1, ε1=0, and V0=0, Eq. (2) is a standard NLSE
that possesses an exact bright soliton solution. In the
case that Eq. (2) is supplemented by the external small
perturbation, i.e., V0 and ε1 are both of small value, how-
ever, the shifts of the bright soliton’s parameters take

place during the evolution process. As we are interested
in the evolution of the BEC bright soliton, this issue
can be addressed by using the variational approach. The
standard variational approach is a procedure for obtain-
ing approximate solutions of the NLSE when a trial so-
lution containing unknown parameters is assumed. The
main advantage of the approach is that it provides ex-
plicit, although approximate, analytical expressions for
the parameters. These analytical expressions give some
of the most important features of the solution and pro-
vide us with a better physical understanding of the soli-
ton. The main shortcoming of the use of trial solution is
the inability to account for changes in pulse shape[14−16].
We adopt the Gaussian function (quasi-soliton) below as
the trial function (variational ansatz):

u(x, t) = Aexp[−B2(x− x0)
2
/

2]exp {i[C(x − x0) + φ]} ,
(3)

where A, B, and x0 represent the amplitude, inverse
width in space, and location of the soliton’s center-of-
mass, respectively; φ is the phase; C defines both the
linear phase coefficient and the wave number. It is im-
portant to emphasize that the object that we are going
to study is not the soliton in the mathematical meaning,
but rather “a solitary wave” as it appears in a noninte-
grable model. On the other hand, A and B are mutually
independent because the perturbation terms have been
introduced. During the evolution of the soliton, u(x, t)
retains the Gaussian shape given by Eq. (3), but the pa-
rameters are the functions of time as a result of the small
perturbation.

We obtain the averaged Lagrangian of Eq. (2) by the
ansatz (3):

L(t) =

∫ ∞

−∞

{

i

2
(u∗

∂u

∂t
− u

∂u∗

∂t
) − 1

2

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

2

+
1

2

[

ε0 + ε1cos(2kx)

]

|u|4 − V0cos(2kx)|u|2
}

dx

=
√
π
A2

B
(Cẋ0 − φ̇) −

√
π

2

A2

B

(

B2

2
+ C2

)

+

√
π

2
√

2

A4

B

[

ε0 + ε1cos(2kx0)exp

(

− k2

2B2

)]

−
√
πV0

A2

B
cos(2kx0)exp

(

− k2

B2

)

, (4)

where the dot over the parameters denotes a differential with respect to time t and the asterisk denotes the complex

conjugate. Using the Euler-Lagrange equations,
∂L

∂σ
− d

dt

(

∂L

∂σ̇

)

= 0, the following equations are obtained when

selecting σ = φ, x0, C, A, and B :

√
πA2/B = constant ≡ N, (5a)

Ċ = − ε1k√
2π
NBsin(2kx0)exp

(

− k2

2B2

)

+ 2kV0sin(2kx0)exp

(

− k2

B2

)

, (5b)

ẋ0 = C, (5c)

−B2 +
NB√

2π

[

ε0 + ε1 cos(2kx0)

(

k2

B2
+ 1

)

exp

(

− k2

2B2

)]

− V0
4k2

B2
cos(2kx0)exp

(

− k2

B2

)

= 0, (5d)

φ̇ =
C2

2
+

NB

4
√

2π

[

3ε0 − ε1 cos(2kx0)

(

k2

B2
− 3

)

exp

(

− k2

2B2

)]

− V0

(

1 − k2

B2

)

cos(2kx0) exp

(

− k2

B2

)

. (5e)
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Equations (5a)−(5e) determine the evolution of the BEC
bright soliton. It is clear that there are terms in these
equations that are explicitly dependent on ε1 describing
the effects predicted when the spatial variation of the
s-wave scattering length is taken into account. In the
case of ε1=0 and V0=0, we can conclude that the BEC
bright soliton moves with a constant speed and a stable
shape.

It is shown that the phase has no effect on the velocity,
width, and wave number of the soliton. On the contrary,
according to Eq. (5e), the phase is determined by other
parameters during the evolution of the BEC soliton. We
are primarily interested in both the evolution of the atom
density envelope and the movement behavior of the BEC
soliton and, hence, we leave Eq. (5e) and discuss the
other equations.

Equation (5a) can be interpreted as a conservation
law (the conservation of the atom number) which is
related to the normalization of the trial function and
N =

∫ +∞
−∞ |u|2 dx =

√
πA2

/

B is a constant. Although

we infer from Eq. (5a) that A2/B is still a constant
in presence of the spatially modulated nonlinearity, Eq.
(5d) can be regarded as an equation determining A and
B once the other parameters are known so that the
equations are self-consistent. Therefore, Eq. (5d) is the
constraint equation of the parameters for a stable BEC
soliton. It shows that B is related to the spatially modu-
lated coefficient ε1. To understand the effects, in Fig. 1,
we plot the inverse width of the BEC soliton versus the
spatially modulated coefficient ε1 according to Eq. (5d)
when the BEC soliton is stable. It shows that the inverse
width of a stable BEC soliton increases as ε1increases.
This is because for positive ε1 the nonlinearity becomes
stronger, leading to the narrower width . In the opposite
case (ε1 <0), the nonlinearity is weaker and the soliton’s
width has to increase. When the nonlinearity is weak
enough, for example, when −0.5 <ε1 < −0.3, the effects
of nonlinearity on the width is small, as shown in the
figure. Then the width is primarily determined by the
dispersion and the trapping potential.

Equation (5c) is the equation determining the move-
ment of the soliton’s center-of-mass. It shows that
the modification brought about by the spatially mod-
ulated nonlinearity is to alter the velocity of the soliton’s
center-of-mass. In order to investigate the effects of the

Fig. 1. Inverse width of the BEC soliton versus the spa-
tially modulated coefficient ε1. The parameters are selected
as N=6, k=0.1 (the long-period OL), 2as0/a⊥ = 1, x0 = 0,
and V0 = −0.5.

spatially modulated nonlinearity on the soliton’s move-
ment, we insert Eq. (5b) into Eq. (5c). An anharmonic
effective potential is derived using the classical mechanics
analogy, which is

Veff =

[

− ε1NB

2
√

2π
exp

(

− k2

2B2

)

+ V0exp

(

− k2

B2

)]

×cos(2kx0) ≡ Veff1 + Veff2. (6)

where Veff2 = V0exp(−k2/B2)cos(2kx0) arises from
the OL. We find that the effective potential is not
equal to the external trapping potential and is re-
lated to the parameters of the soliton. Veff1 =
− ε1NB

2
√

2π
exp(−k2/(2B2))cos(2kx0) is induced by the spa-

tial modulation of the nonlinearity and is actually a
pseudo-potential as pointed out in Ref. [17]. The soliton
can “feel” the effective potential although it is not a true
external trapping potential. Notice that it is a dynamic
potential and depends on the soliton characteristics (i.e.,
N and B). Because of the periodic OL and spatially pe-
riodic modulation of the nonlinearity, the entire effective
potential Veff is periodic. By considering the model
combining the spatially periodic modulation of the non-
linearity and periodic potential, the similar conclusions
are also predicted in Ref. [18] by using the Hamilto-
nian perturbation approach. Those conclusions provide
a quantitative basis for understanding the dynamics of
the BEC soliton with spatially modulated nonlinearity.
According to Eq. (6), the motion of the BEC bright soli-
ton can be approximately regarded as that of a particle
inside an effective potential energy Veff . Thus, we can
determine the motion trajectory of the equivalent sin-
gle particle. By numerical simulations, Veff versus x0 is
plotted in Fig. 2 which indicates that the spatially mod-
ulated nonlinearity deforms the shape of the effective
potential and changes the kinematics characteristics of
the soliton depending on the sign and value of ε1. The
same parameters as those in Fig. 1 are selected, but B
is determined by Eq. (5d). We find that Veff1 compen-
sates Veff2, and that Veff is a potential well which is not
equal to the external trapping potential. If we initialize
a motionless BEC soliton at the nonequilibrium location,
i.e., x0 6= 0, it will vibrate around the stable equilibrium
point x=0. When ε1 > 0, Veff becomes deeper, and the
vibration of the BEC soliton should be faster. In the
opposite case, when ε1 < 0, Veff becomes shallower, the

Fig. 2. Effective potential energy Veff versus location of the
soliton’s center-of-mass x0. N=6, k=0.1, and V0 = −0.5. B
is determined by Eq. (5d).
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Fig. 3. Evolution of the atom density envelope of the BEC
bright soliton. x0=2 and ε1=0.1, 0, −0.1 for (a), (b), (c),
respectively. x0=0 and ε1 = −0.1 for (d).

vibration should become slower.
In order to make sure of the validity of the theo-

retical predictions, in Fig. 3, we show the motion of
the BEC bright soliton by a direct numerical integra-
tion of Eq. (2). The figures indicate the evolution
of the BEC soliton’s atom density envelope |u|2. In
our numerical simulations, the initial input pulse is

u(x, t = 0) =

(

NB/π1/2

)1/2

exp

[

− B2(x − x0)
2/2

]

where N=6, B=3, and x0=2. The nonlinear coefficients
are 2as0/a⊥ = 1, and ε1=0.1, 0, −0.1 for Figs. 3(a), (b),
(c), respectively. The parameters of the OL are k=0.1
and V0 = −0.5. We can find that the soliton vibrates in
the periodic manner around the point x=0. Compared
with Fig. 3(b) where ε1=0, the vibration of the BEC
soliton is faster when ε1=0.1 as shown in Fig. 3(a). On
the contrary, Fig. 3(c) indicates clearly that the vibra-
tion of the BEC soliton slows down when ε1 = −0.1.
In these figures, we also find that the soliton’s width
alternates during vibration. This is because the inverse
width of a stable BEC soliton is related to the location
of the BEC soliton’s center-of-mass as predicted in Fig.
1. When ε1=0.1, however, the alternation is small, and
the amplitude is slightly larger. The reason is that ε0 is
larger and the nonlinearity is dominant. The effect of
the location of the soliton’s center-of-mass on the width
is small according to Eq. (5d). When ε1 = −0.1, ε0
becomes small and the terms that contain the cosine
function are dominant. Then the soliton’s width alter-
nates periodically as x0 alternates, which is shown in
Fig. 3(c). These conclusions are in agreement with the
foregoing theoretical predictions. It is important to em-
phasize that the BEC soliton’s width is also related to
the stability. When an unstable soliton is introduced, it
will evolve into a stable soliton, and the soliton’s width
will alternate. This is shown in Fig. 3(d) for which the
same parameters of the simulation are selected as those
in Fig. 3(c) except x0=0 in the initial input pulse.

In conclusion, we have investigated the evolution and

motion characteristics of a BEC bright soliton when the
s-wave scattering length is spatially modulated by the
OL. It is found that a stable BEC bright soliton may
exist in appropriate initial conditions. The coefficient of
the spatially modulated nonlinearity plays an important
role and determines the soliton’s parameters during the
evolution of the BEC bright soliton. The spatial mod-
ulation of nonlinearity term also changes the movement
of the soliton depending on the sign and value of the
coefficient of the spatially modulated nonlinearity. Ac-
cording to the investigation, one can understand the evo-
lution characteristics of a BEC bright soliton. In view
of the practical applications of the BEC soliton, under-
standing these properties is important.
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